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A POSTERIORI FINITE ELEMENT BOUNDS FOR SENSITIVITY DERIVATIVES OF

PARTIAL–DIFFERENTIAL–EQUATION OUTPUTS ∗

ROBERT MICHAEL LEWIS † , ANTHONY T. PATERA ‡ , AND JAUME PERAIRE §

Abstract. We present a Neumann-subproblem a posteriori finite element procedure for the efficient
and accurate calculation of rigorous, “constant–free” upper and lower bounds for sensitivity derivatives of
functionals of the solutions of partial differential equations. The design motivation for sensitivity derivative
error control is discussed; the a posteriori finite element procedure is described; the asymptotic bounding
properties and computational complexity of the method are summarized; and illustrative numerical results
are presented.
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1. Introduction. We consider here an engineering system or component characterized by a design
variable (or vector) β. We assume that the behavior of this system can be adequately represented by the
solution of an appropriate partial differential equation, or perhaps set of partial differential equations. A
typical engineering “forward” analysis is thus initiated by the specification of the design variable β; the partial
differential equation then yields a field variable (or set of field variables) u(·;β); finally, on the basis of these
intermediate field variables, the output(s) s(β) can be evaluated. Here “output” denotes the engineering
quantity of interest, that is, the metric relevant to the performance of the system. For our purposes here,
we assume that this output is a linear functional of the field variable, s(β) = `(u(·;β)).

Of ultimate interest, of course, is not the forward problem, but the “design problem.” In brief, the design
problem articulates the engineering objectives and constraints as a function of the outputs, and then seeks
the best value of the design variable β with respect to the selected criteria. Successful solution of the design
problem requires repeated appeal to the forward problem in order to calculate (i) the output s(β), and (ii)
the sensitivity derivative of the output with respect to the design variable, s′ ≡ ds/dβ. The sensitivity
derivatives can be important both in informal and formal design optimization contexts: in the former, s′

provides promising new search directions as well as an indication of design “robustness”; in the latter, s′

provides the gradients required by (rapidly convergent) quasi–Newton methods [11, 12].

For most problems of engineering interest, the underlying partial differential equations are far too com-
plex to admit analytical solution, and a numerical approximation must thus be introduced; we shall consider
here finite element methods. The requirements on the numerical approximation are twofold: the approxima-
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tion must be sufficiently coarse so as to permit repeated appeal within the design context; the approximation
must be sufficiently fine so that the numerical prediction of the desired outputs and associated sensitivity
derivatives is representative of the true performance of the system.

A posteriori error control offers great promise in reconciling these often conflicting requirements. A

posteriori analysis [3, 29] is composed of two critical ingredients: an estimation procedure which inexpensively
assesses the error in a particular numerical solution; and an adaptive refinement procedure which exploits
this error information to optimally improve the numerical solution. There are two objectives of a posteriori

error control: to eliminate numerical uncertainty — arguably the single largest impediment to widespread
adoption of simulation–based design; and to improve the numerical efficiency of the forward and optimization
problem — thus permitting much more extensive design exploration.

In fact, greater certainty is a prerequisite for greater efficiency: we may consider a less expensive (or
even the least expensive) discretization only if the associated error can be quantified, and hence constrained
and controlled; we are no longer compelled to choose either certainty or efficiency — both can be achieved.
Simultaneous control of approximation accuracy and approximation cost is particularly critical in the devel-
opment of robust and effective design optimization procedures: for example, the accuracy of the sensitivity
derivatives s′ strongly affects both the convergence, and the convergence rate, of (say) trust region [9, 19]
and line–search [11, 20] quasi–Newton techniques [28].

In all earlier a posteriori error analysis techniques, either — in implicit approaches — the measure
of the error is not related to the actual engineering outputs of interest (e.g., [15, 4, 2]), or — in explicit
approaches — the error estimates for the engineering outputs of interest involve numerous undetermined or

uncertain constants or functions (e.g.,[5, 6, 27]); in both cases, quantitative confirmation — and hence both
certainty and efficiency — is seriously compromised, and the relevance to engineering design greatly reduced.
In [21, 23, 25, 18] we propose a new class of a posteriori procedures that provide a critical new “enabling
technology”: the ability to obtain inexpensive, sharp, rigorous, and quantitative (“constant–free”) bounds

for the numerical error in the engineering outputs of interest. Our method is thus directly relevant to the
design process, and should lay the foundation for systemic application of a posteriori error control within
the engineering context.

Although our method provides a critical new capability, we are nevertheless indebted to earlier a posteri-

ori implicit (Neumann subproblem) techniques [15, 4, 2] for several important conceptual and mathematical
ingredients — in particular duality theory and flux “hybridization.” The former, though not strictly neces-
sary — and even sometimes restrictive — provides a derivational mechanism without which the requisite
equations are very difficult to motivate; the latter — technically quite subtle — is the crucial component in
ensuring computational efficiency. Our framework may thus be viewed as a generalization of earlier implicit
techniques [2]; equivalently, these earlier techniques can be interpreted as special cases of our new formula-
tion. We present in [25] a more detailed comparison between our approach and earlier implicit (and explicit)
a posteriori error control proposals.

Our initial formulation [23, 25, 24] focused on symmetric coercive problems (e.g., Poisson and Linear
Elasticity), and nonsymmetric coercive problems (e.g., Convection–Diffusion), as well as certain constrained
problems (the Stokes equations, central to hydrodynamics [22]). However, we have recently developed a
more general formulation [26, 17, 16] that greatly expands the class of equations and outputs that may be
treated; in particular, noncoercive problems (e.g., the Helmholtz equation), nonlinear problems (e.g., the
Burgers equation, the eigenvalue problem), and nonlinear outputs can now be addressed. The approach is
relevant both to Galerkin techniques [17] and stabilized Galerkin methods [16].
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In this paper we extend our framework to the case in which we are interested not only in error bounds
and adaptive procedures for the output s, but also in error bounds and adaptive procedures for the sensitivity
derivative s′. As already indicated, effective control of the accuracy of sensitivity derivatives is crucial in
ensuring both the quality and efficiency of engineering optimization procedures [9, 10]. It is thus surprising
that there is relatively little work on a posteriori error estimation relevant to sensitivity derivatives [7], in
particular since there is considerable debate over the best way — discrete or continuous [28, 13, 8, 14] —
to calculate the sensitivity functions and adjoints required to compute s′. In this work we aim to at least
partially address the paucity of a posteriori results for this important class of problems.

In Section 2 we describe our model problem. For our purposes here we consider a simple one–dimensional
coercive differential equation: noncoercive, semi–linear, and multi-dimensional problems [17] require virtually
no modifications to the framework, and will be addressed in future publications. Furthermore, in this first
paper we focus exclusively on a posteriori error estimators for s′; once these estimators are obtained, the
adaptive procedures described in [25, 16] can be directly applied. We next introduce in Section 3 the relevant
finite–element spaces and approximations. In Section 4 we describe the a posteriori procedure; Section 5
then discusses the computational complexity of this procedure and the asymptotic bounding properties of
the resulting lower and upper estimators. Finally, in Section 6, we present a series of illustrative numerical
results.

2. Problem Statement. As our model problem we shall consider a second–order inhomogeneous
Dirichlet problem for u(x;β),

−ν(β)uxx + ρ(β)ux + α(β)u = f in Ω,

u(0) = 0, u(1) = 1,

where f is the prescribed inhomogeneity and Ω =]0, 1[ is the domain. Here ν, ρ, and α are respectively strictly
positive, general, and non–negative real quantities which are independent of x but may depend on the design
parameter β. (Extension of the framework to permit these coefficients to vary with x is straightforward, as
will be clear from the exposition; examples will be presented in future publications.) Although we consider
here the Dirichlet problem, Neumann problems can also be readily treated.

Our point of departure shall be the weak formulation: Find u ∈ XD such that

a(u, v) = 〈f, v〉, ∀v ∈ X,(2.1)

where X = H1
0 (Ω) and XD = H1

D(Ω). We recall that H1
0 (Ω) is the space of functions v such that (i) v

and vx are in L2(Ω) (that is, square integrable [1]), and (ii) v(0) = v(1) = 0; similarly, H1
D(Ω) is the set of

functions v such that (i) v and vx are in L2(Ω), and (ii) v(0) = 0, v(1) = 1. The bilinear form a(w, v) (or
more precisely a(w, v;β)) is given by

a(w, v) =
∫ 1

0

ν(β)wxvx + ρ(β)wxv + α(β)wv dx.(2.2)

Finally, f ∈ H−1(Ω) (the dual of H1(Ω)), and 〈 , 〉 thus denotes the duality pairing.
Our interest is not directly in u(x;β), but rather in the output s(β) = `(u(x;β)) and the sensitivity

derivative s′(β). The latter may be computed as

s′(β) = `(U(x;β)),(2.3)
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where U ≡ u′(x;β) ≡ du(x;β)
dβ ∈ X , the sensitivity function, satisfies

a(U, V ) = 〈f ′, V 〉 − a′(u, V ), ∀V ∈ X,(2.4)

in which

a′(w, v) =
∫ 1

0

ν′(β)wxvx + ρ′(β)wxv + α′(β)wv dx;(2.5)

here ′ denotes, as always, d
dβ . We could also readily permit the Dirichlet data to depend on β; in this case

U in (2.4) would satisfy inhomogeneous Dirichlet conditions. Finally, we note that the sensitivity function
is only one of two approaches to the computation of sensitivity derivatives; the adjoint formulation will be
considered in future publications.

For the formulation presented here the computation of the sensitivity derivatives thus requires, first, the
solution of (2.1) for u, then the solution of (2.4) for U , and finally the evaluation of s′(β) from (2.3): (2.1)
and (2.4) are coupled but “triangular.” However, if the only dependence on β is through f (or, in fact, the
Dirichlet data) — that is, ν′ = ρ′ = α′ = 0, and hence a′ = 0 — then the system is no longer coupled: we can
compute U and hence s′ independently of u and s. In this instance — which arises in many design contexts,
including certain open–loop control problems and shape optimization formulations — we may directly apply
our earlier bound procedures [23, 25, 17] to (2.4) and (2.3); as we shall see, this “direct” approach is, in fact,
a special case of the more general framework developed in this paper.

Finally, we close this section by slightly generalizing our problem statement (2.1), (2.4), (2.3). In
particular, we introduce a real positive parameter σ, and replace (2.1), (2.4), and (2.3) with

a(u, v) = 〈f, v〉, ∀v ∈ X,(2.6)

a(U, V ) = σ(〈f ′, V 〉 − a′(u, V )), ∀V ∈ X,(2.7)

and

s′(β) =
1
σ
`(U),(2.8)

respectively. It is clear from the linearity of our output functional that (2.1), (2.4), (2.3) and (2.6), (2.7), (2.8)
do indeed yield the same sensitivity derivative; this simply reflects the invariance of the sensitivity derivative
to rescalings of the design parameter. However, (2.6), (2.7), (2.8) permits us to control the magnitude of a′

relative to the magnitude of a in the coupled system (2.6), (2.7); this will be advantageous in the context of
our error bound procedure.

It will prove very convenient in what follows to write (2.6), (2.7) more succinctly in terms of a product
space. In particular, we define Y D = XD ⊗X , and Y = X ×X , and introduce the bilinear form

E((w,W ), (v, V )) = a(w, v) + a(W,V ) + σa′(w, V ),(2.9)

for a and a′ as defined in (2.2) and (2.5), respectively. It is then simple to see that (u, U) ∈ Y D satisfies

E((u, U), (v, V )) = 〈f, v〉+ σ〈f ′, V 〉, ∀(v, V ) ∈ Y,(2.10)

since variations in v and V recreate (2.6) and (2.7), respectively. (Note that E in (2.9) can be further
generalized: the v and V contributions need not be assigned the same weight.)
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3. Finite Element Approximation. We shall consider here only uniform meshes, although in practice
(adaptive) non–uniform meshes are preferred. We first introduce a uniform triangulation of Ω, Tδ, comprising
Kδ elements Tδ of uniform length δ = K−1

δ ; the corresponding Nδ = Kδ + 1 nodes of TH are denoted by
xδ i = (i− 1)δ, i = 1, . . . , Nδ. We then define our linear finite element approximations spaces as

Xδ = {v|Tδ
∈ IP1(Tδ), ∀Tδ ∈ Tδ} ∩X,(3.1)

XD
δ = {v|Tδ

∈ IP1(Tδ), ∀Tδ ∈ Tδ} ∩XD,(3.2)

where IP1(Tδ) refers to the space of linear polynomials over Tδ. Finally, we define our approximation product
spaces as Y Dδ = XD

δ ⊗Xδ and Yδ = Xδ ⊗Xδ.

Our finite element approximation (uδ, Uδ) ∈ Y Dδ , s′δ ∈ IR to (u, U) ∈ Y D, s′ ∈ IR of (2.6), (2.7), (2.8) is
then given by

E((uδ, Uδ), (v, V )) = 〈f, v〉+ σ〈f ′, V 〉, ∀(v, V ) ∈ Yδ,(3.3)

and

s′δ =
1
σ
`(Uδ).(3.4)

Summarizing the a priori theory, it is readily demonstrated that the problems (2.10) for (u, U) and (3.3) for
(uδ, Uδ) are well-posed, yielding unique solutions. It can be further shown that, given sufficient regularity,
‖u − uδ‖1 and ‖U − Uδ‖1 vanish as O(δ), where ‖ · ‖1 denotes the H1 norm; in addition, application of
Aubin–Nitsche theory to our product space formulation confirms that, as expected, ‖u−uδ‖0 and ‖U−Uδ‖0

vanish as O(δ2), where ‖ · ‖0 denotes the L2 norm. Finally, Aubin–Nitsche theory also readily reveals that
both |s− sδ| and |s′ − s′δ| vanish as O(H2) (here sδ = `(uδ)).

For the purposes of our bound formulation we shall be interested in two particular finite element spaces:
a coarse, or design, approximation space, XH ≡ Xδ=H ; and a fine, or “truth,” approximation, Xh ≡ Xδ=h.
We require that H/h is integral such that Th is a refinement of TH . The corresponding coarse and fine
finite element approximations — solutions of (3.3), (3.4) — will be denoted (uH , UH) ∈ Y DH , s′H ∈ IR and
(uh, Uh) ∈ Y Dh , s′h ∈ IR, respectively. In brief, the coarse approximation is the approximation that we must

use due to computational constraints; the fine approximation is the approximation that we would like to
use — that is, the approximation on which we can (and will) safely assume that uh, Uh, sh, and s′h are
all arbitrarily close to the corresponding exact quantities u, U, s, and s′. For future reference we define
e = uh− uH and E = Uh−UH ; it follows from our a priori results that, for h sufficiently small compared to
H , ‖e‖1 and ‖E‖1 vanish as O(H), while ‖e‖0, ‖E‖0, and |s′h − s′H | vanish as O(H2).

Our goal will be to obtain bounds for s′h — the sensitivity derivative on the fine mesh — at considerably
less cost than direct computation of s′h = `(Uh); indeed, the cost to compute the bounds will typically be only
slightly greater than the cost to compute the coarse sensitivity derivative, s′H . The coarse approximation will
provide the “guesses” — in fact, Lagrange multipliers — which will ensure that these bounds are sufficiently
accurate; in particular, given our a priori results, we require that the bounds approach s′h as O(H2). We
will, indeed, achieve this desired (optimal) rate of convergence.

4. Bound Formulation.
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4.1. Preliminaries: Spaces and Forms. We first introduce coarse and fine broken spaces,

X̂H = {v|TH ∈ IP1(TH), ∀TH ∈ TH}(4.1)

X̂h = {v|Th
∈ IP1(Th), ∀Th ∈ Th | v|TH ∈ C0(TH), ∀TH ∈ TH},(4.2)

where C0(TH) is the space of continuous functions over TH ; note that the fine broken space is continuous
within each TH . We can thus form the associated broken product spaces ŶH = X̂H⊗ X̂H and Ŷh = X̂h⊗ X̂h.
We next introduce the hybrid flux space Q ≡ IRNH , the members qi of which are defined at the xH i, i =
1, . . . , NH , the nodes of the coarse approximation; the corresponding product space is given by Z = Q⊗Q.

We then define the bilinear form b: Ŷh(or ŶH)× Z → IR as

b((v, V ), (q,Q)) =
NH∑
n=1

[v]nqn +
NH∑
n=1

[V ]nQn,(4.3)

where [w] denotes the jump at the interfaces: for any 1 < i < NH , [w]n = w(x+
H n) − w(x−H n), where

w(x+
H n) (respectively, w(x−H n)) refers to the limit as x → xH n from the right (respectively, left); at the

two endpoints, we define [w]1 = w(0) and [w]NH = −w(1). The bilinear form imposes continuity (and
homogeneous Dirichlet boundary conditions) on members of the broken spaces in the sense that

YH = {(v, V ) ∈ ŶH | b((v, V ), (q,Q)) = 0, ∀(q,Q) ∈ Z},(4.4)

Yh = {(v, V ) ∈ Ŷh | b((v, V ), (q,Q)) = 0, ∀(q,Q) ∈ Z}.(4.5)

Extension of these spaces and bilinear forms to the multidimensional case is discussed in detail in [23, 25, 18].
We shall also require several forms related to E of (2.9). First, we define in standard fashion the

symmetric part of E ,

Es((w,W ), (v, V )) = as(w, v) + as(W,V ) +
σ

2
(a′(w, V ) + a′(v,W )),(4.6)

where as is the symmetric part of a — for our boundary conditions simply a with the convective term
(ρ(β)wxv) omitted. We then further decompose Es = EsY + EsM ; we shall consider two such decompositions,
Alternative A and Alternative B. In Alternative A we choose

EsY ((w,W ), (v, V )) = as(w, v) + as(W,V ) +
σ

2

∫ 1

0

ν′(wxVx + vxWx)dx,(4.7)

EsM ((w,W ), (v, V )) =
σ

2
(
∫ 1

0

ρ′(wxV + vxW )dx+
∫ 1

0

α′(wV + vW )dx).(4.8)

In Alternative B we choose for EsY and EsM

EsY ((w,W ), (v, V )) = as(w, v) + as(W,V ) +
σ

2

∫ 1

0

ν′(wxVx + vxWx)dx

+
σ

2

∫ 1

0

ρ′(wxV + vxW )dx+
σ

2
|ρ′|

∫ 1

0

WV dx,(4.9)

and

EsM ((w,W ), (v, V )) =
σ

2

∫ 1

0

α′(wV + vW )dx− σ

2
|ρ′|

∫ 1

0

WV dx,(4.10)

respectively.
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4.2. Estimator Procedure. The estimator procedure comprises five steps [23, 18, 17], which we now
describe. Note that we unfold some of the product forms into somewhat more transparent notation in the
next section when we discuss computational complexity in greater detail.

1. Compute (uH , UH) ∈ Y DH from

E((uH , UH), (v, V )) = 〈f, v〉+ σ〈f ′, V 〉, ∀(v, V ) ∈ YH ,(4.11)

and define the associated residual

Ru
H((v, V )) ≡ 〈f, v〉 + σ〈f ′, V 〉 − E((uH , UH), (v, V )),(4.12)

for any (v, V ) in Ŷh.

2. Compute the adjoint (ψH ,ΨH) ∈ YH from

E((v, V ), (ψH ,ΨH)) = − 1
σ
`(V ), ∀(v, V ) ∈ YH ,(4.13)

and define the associated residual

Rψ
H((v, V )) = − 1

σ
`(V )− E((v, V ), (ψH ,ΨH)),(4.14)

for any (v, V ) in Ŷh.

3. Find the hybrid fluxes (puH , P
U
H ) ∈ Z and (pψH , P

Ψ
H ) ∈ Z such that

b((v, V ), (puH , P
U
H )) = Ru

H((v, V )), ∀(v, V ) ∈ ŶH ,(4.15)

b((v, V ), (pψH , P
Ψ
H )) = Rψ

H((v, V )), ∀(v, V ) ∈ ŶH .(4.16)

These equations have a unique solution thanks to equilibrium (4.11), (4.12); in higher space dimensions the
matter is considerably more subtle [23, 18], though now well understood thanks to the important contribu-
tions in [15, 4, 2].

4. Find the reconstructed errors (êu, ÊU ) ∈ Ŷh, (êψ, ÊΨ) ∈ Ŷh such that

2EsY ((êu, ÊU ), (v, V )) = Ru
H((v, V ))− b((v, V ), (puH , P

U
H )), ∀(v, V ) ∈ Ŷh,(4.17)

2EsY ((êψ, ÊΨ), (v, V )) = Rψ
H((v, V ))− b((v, V ), (pψH , P

Ψ
H )), ∀(v, V ) ∈ Ŷh.(4.18)

The well–posedness of this problem for our different choices of EsY will be discussed shortly.

5. Compute the lower (s′−) and upper (s′+) estimators as s′± = s′ ±∆′, where

s′ = s′H − 2EsY ((êu, ÊU ), (êψ, ÊΨ)),(4.19)

∆′ = 2
√
EsY ((êu, ÊU ), (êu, ÊU )) EsY ((êψ , ÊΨ), (êψ, ÊΨ)).(4.20)
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The difference between the upper and lower estimators — the bound gap, ∆′ — can be decomposed into
elemental contributions; the latter then serve as local indicators for adaptive refinement [25, 16].

Note that, for any given σ, these estimators have already been optimized over the scaling parameter κ of
[25, 18, 17].

We now address the well–posedness of Step 4; to begin, we consider Alternative A, with α = 0. We
first note from (4.7) that (4.17), (4.18) is singular in this case: EsY (( , ), (v, V )) vanishes for (v, V )|TH =
(cTH

1 , cTH
2 ), ∀TH ∈ TH , where the cTH

1 , cTH
2 are real constants. However, thanks to the definition of the

hybrid fluxes, (4.15), (4.16), the problem is solvable; furthermore, it is clear from (4.19), (4.20) that the
final bounds in Step 5 do not depend on the nullspace component chosen — though for theoretical purposes
we should select the reconstructed errors to be of zero mean over each TH [18]. We next note that, for
0 < σ ≤ 2ν/|ν′|, EsY is positive semi–definite over Ŷh, since

EsY ((v, V ), (v, V )) = as(v, v) + as(V, V ) + σν′
∫ 1

0

vxVxdx

≥ ν

∫ 1

0

(v2
x + V 2

x )dx − σ

2
|ν′|

∫ 1

0

(v2
x + V 2

x )dx;(4.21)

we have used here the standard inequality

|ab| ≤ 1
2
(εa2 +

b2

ε
)(4.22)

for a and b real numbers and ε = 1. It further follows from (4.21) that, first, (4.17), (4.18) is well–posed
and stable (coercive) over the nullspace–excised quotient space, and second, the argument of the radical in
Step 5 is always non–negative. In short, the entire bound procedure is well–posed. The case in which α 6= 0
is, in fact, simpler: the problems are no longer singular, however the advantageous zero–mean property still
obtains [18].

Alternative B leads to a rather similar analysis. We presume that ρ′ 6= 0, as otherwise Alternative A
and Alternative B are identical; and we first consider the more difficult case, α = 0. We find from (4.9)
that (4.17), (4.18) is again singular, however the nullspace is now different: EsY (( , ), (v, V )) vanishes for
(v, V )|TH = (cTH

1 , 0), ∀TH ∈ TH , where the cTH
1 are real constants. However, due to the definition of the

hybrid fluxes, (4.15), (4.16), the problem is solvable; furthermore, it is clear from (4.19), (4.20) that the
final bounds in Step 5 do not depend on the nullspace component chosen — for theoretical reasons we select
êu, êψ to be of zero mean. (It can also be argued that the elemental mean of ÊU , ÊΨ, though not zero, will
be suitably small.) We next note that, for 0 < σ < 2ν/(|ν′|+ |ρ′|), EsY is positive semi–definite over Ŷh, since

EsY ((v, V ), (v, V )) ≥ ν

∫ 1

0

(v2
x + V 2

x )dx− σ

2
|ν′|

∫ 1

0

(v2
x + V 2

x )dx

−σ
2
|ρ′|

∫ 1

0

(v2
x + V 2)dx+

σ

2
|ρ′|

∫ 1

0

V 2dx,(4.23)

where we have again evoked (4.22) with ε = 1. It follows, as for Alternative A, that first, (4.19), (4.20) is
well–posed and stable (coercive) over the nullspace–excised quotient space, and second, the argument of the
radical in Step 5 is always non–negative. The case in which α 6= 0 poses no problem: the problems are no
longer singular, however the zero–mean property for êu, êψ still obtains.

5. Estimator Properties. In order to be of interest, the estimators must enjoy certain properties:
(i) the estimators s′−, s

′
+ must correspond to bounds under appropriate hypotheses, and converge to the
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true result s′h sufficiently quickly; and (ii) the estimators must be inexpensive to compute relative to `(Uh).
We consider the former in Section 5.1, and the latter in Section 5.2. Note that, as regards computational
complexity, we effectively anticipate multi–dimensional problems.

5.1. Bounding Properties. We consider only the lower estimator; similar results obtain for the upper
estimator. To begin, we note that it follows directly from the general formulation of [17, 16] that, for both
Alternative A and Alternative B,

s′− = s′h − κ∗EsY ((e− ê, E − Ê), (e− ê, E − Ê))− κ∗EsM ((e, E), (e, E)),(5.1)

where

(ê, Ê) = (êu +
1
κ∗
êψ, ÊU +

1
κ∗
ÊΨ),(5.2)

and

κ∗ =
√
EsY ((êψ, ÊΨ), (êψ , ÊΨ))/EsY ((êu, ÊU ), (êu, ÊU ))(5.3)

is the optimal scaling parameter of [25, 17]. We assume that σ is chosen such that EsY is positive–definite.
Considering first the second — negative–definite — term of (5.1), it is clear from our a priori results

for the H1 error that this term should vanish no faster than O(H2). In fact, based on arguments similar
to those developed in [17], it can be shown that, given sufficient regularity, this negative–definite term will
indeed vanish quadratically. We now turn to the third — indefinite – term. For Alternative A we obtain
from (4.8) and the inequality (4.22) that

|EsM ((e, E), (e, E))| ≤ σ

2
(|ρ′|

∫ 1

0

(εe2x +
E2

ε
)dx + |α′|

∫ 1

0

(e2 + E2)dx).(5.4)

From our a priori results for the H1 and L2 error it follows that, for the choice ε = H , |EsM ((e, E), (e, E))|
will vanish at least as fast as O(H3). For Alternative B, (4.10), we obtain in a similar fashion that

|EsM ((e, E), (e, E))| ≤ σ

2
(|α′|

∫ 1

0

(e2 + E2)dx+ |ρ′|
∫ 1

0

E2dx),(5.5)

which, from our a priori results for the L2 error, should vanish as O(H4).
We can thus draw two conclusions. First, for H sufficiently small, the indefinite term in (5.1) will be

subdominant (in fact, vanishingly small) relative to the principal (negative–definite) contribution, and thus
s′− will approach s′h from below — we obtain an asymptotic lower bound. Similar arguments demonstrate
that s′+ approaches s′h from above, and thus s′+ is an asymptotic upper bound. For the case in which only
ν′ and f ′ are non–zero, we obtain rigorous lower and upper bounds for all H ; in practice, we find that,
even for ρ′ and α′ non–zero, it is very difficult not to obtain bounds — consistent with earlier applications
of our bound procedure to noncoercive and nonlinear problems [26, 17, 16]. Second, we conclude that the
estimators should converge to s′h at the optimal rate — O(H2) for our linear finite element approximation.

5.2. Computational Complexity. There are two issues that must be addressed: first, how does the
computational cost of s′− (say) compare to that of s′h = `(Uh)?; and second, how does the complexity scale
when we permit several outputs, sm ≡ `m(u),m = 1, . . . ,M , and several design parameters (or “inputs”),
βj , j = 1, . . . , J? The former is discussed in great detail in [23, 25, 18, 16]. The essential point is that the
work on the fine mesh — Step 4 — is reduced to computations over the broken space Ŷh: it follows from
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the superlinearity of most solution strategies (at least in higher space dimensions) [16] that computation of
(êu, ÊU ) and (êψ, ÊΨ) is much less expensive than computation of uh, Uh — indeed, often no more expensive
than computation of uH , UH . There are several other factors that further significantly decrease the cost of
(êu, ÊU ) and (êψ, ÊΨ) relative to uh, Uh: the equations for (êu, ÊU ) and (êψ, ÊΨ) will be symmetric, linear,
and positive definite even when the original operator enjoys none of these properties; and the equations
for (êu, ÊU ) and (êψ, ÊΨ) admit obvious — communication–free, completely concurrent — medium–grained
parallelism.

Turning now to the multiple-output, multiple-input question, our interest is in computing bounds for
the MJ quantities (sh)mj , the derivatives of the smh = `m(uh) with respect to the βj . We now address each
step of the bound procedure. We shall assume that the usual nodal bases are evoked to transform the weak
statements into appropriate linear algebraic systems, Ax = y; A and y shall be denoted the “matrix” and
“right–hand side,” respectively.

1. We first compute uH ∈ XD
H ,

a(uH , v) = 〈f, v〉, ∀v ∈ XH ,(5.6)

and then (UH)j ∈ XH , j = 1, . . . , J ,

a((UH)j , V ) = σ(〈fj , V 〉 − aj(uH , V )), ∀V ∈ XH ,(5.7)

where aj(w, v) (respectively fj) refers to the derivative of the bilinear form a (respectively f) with respect
to βj. We must thus solve one system in (5.6), and J systems in (5.7). The J + 1 systems in (5.6), (5.7)
share a common matrix; only the right–hand side varies.

2. We first compute Ψm
H ∈ XH ,m = 1, . . . ,M ,

a(V,Ψm
H) = − 1

σ
`m(V ), ∀V ∈ XH ,(5.8)

and then (ψH)mj ∈ XH , j = 1, . . . , J,m = 1, . . . ,M ,

a(v, (ψH)mj ) = −aj(v,Ψm
H), ∀v ∈ XH .(5.9)

We must thus solve M systems in (5.8), and MJ systems in (5.9). All M +MJ systems share a common
matrix — in fact the transpose of the matrix associated with (5.6), (5.7); only the right–hand side varies.

3. We now compute the hybrid fluxes (puH , P
U
H )j ∈ Z, j = 1, . . . , J , and (pψH , P

Ψ
H )mj ∈ Z, j = 1, . . . , J,m =

1, . . . ,M , from

b((v, V ), (puH , P
U
H )j) = (Ru

H)j((v, V )), ∀(v, V ) ∈ ŶH ,(5.10)

b((v, V ), (pψH , P
Ψ
H )mj ) = (Rψ

H)mj ((v, V )), ∀(v, V ) ∈ ŶH ,(5.11)

where

(Ru
H)j((v, V )) = 〈f, v〉+ σ〈fj , V 〉 − Ej((uH , (UH)j), (v, V )),

(Rψ
H)mj ((v, V )) = − 1

σ
`m(V )− Ej((v, V ), ((ψH)mj ,Ψ

m
H)),
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and Ej is E of (2.9) with a′ replaced by aj . The systems (5.10) and (5.11) correspond to small, local problems
— one problem (in fact four problems given the four hybrid fluxes) for each node of the coarse mesh. In the
case of M outputs and J inputs we will now require 2(J +MJ) hybrid fluxes; in all 2(J +MJ) cases the
particular matrices associated with each node are identical.

4. We find the reconstructed errors (êu, ÊU )j ∈ Ŷh, j = 1, . . . , J , and (êψ, ÊΨ)mj ∈ Ŷh, j = 1, . . . , J,m =
1, . . . ,M , such that

2EsY j((êu, ÊU )j , (v, V )) = (Ru
H)j((v, V )) − b((v, V ), (puH , P

U
H )j), ∀(v, V ) ∈ Ŷh,(5.12)

2EsY j((êψ, ÊΨ)mj , (v, V )) = (Rψ
H)mj ((v, V ))− b((v, V ), (pψH , P

Ψ
H )mj ), ∀(v, V ) ∈ Ŷh,(5.13)

where EsY j corresponds to EsY of (4.7) or (4.9) with a′ replaced by aj . We must solve J systems in (5.12)
and MJ systems in (5.13). The former correspond to J different matrices; the latter to the same set of J
different matrices, each with M different right–hand sides.

5. Finally, we compute the lower ((s−)mj ) and upper ((s+)mj ) estimators as (s±)mj = (s)mj + (∆)mj , j =
1, . . . , J,m = 1, . . . ,M , where

(s)mj = (sH)mj − 2EsY j((êu, ÊU )j , (êψ, ÊΨ)mj ),(5.14)

(∆)mj = 2
√
EsY j((êu, ÊU )j , (êu, ÊU )j) EsY j((êψ, ÊΨ)mj , (êψ, ÊΨ)mj ).(5.15)

We now require MJ inner products; in any event, this calculation does not contribute significantly to the
computational cost.

We close with a brief summary. In the case of direct solution methods, in particular LU (e.g, skyline or
banded) solution procedures, the penalty for additional outputs and inputs is relatively small: on the coarse
mesh, no additional LU decompositions are required, only additional (much less expensive) forward/back
solves; on the broken fine mesh, the penalty is somewhat more significant, in particular as regards multiple
inputs — we must now perform J LU decompositions. (The stronger dependence on number of inputs
is perhaps to be expected given that our formulation is based on the sensitivity function.) In the case of
iterative solution methods it is more difficult to amortize additional right–hand sides, and thus the situation
is less encouraging. Finally, we remark that even with the adjoint formulation the bounds require additional
solves for multiple inputs; in essence, we obtain a bound on each individual sensitivity derivative, and thus
the usual economies of scale do not apply.

6. Numerical Results. We now present our numerical results. In all the examples we shall set α = 0,
ρ = 10, and ν = 1; for f = 0 the solution is a boundary layer of thickness O(ν/ρ = 0.1) near the right–
hand boundary, x = 1. In the first test case we look at variations in ν; in the second test case we look at
variations in ρ; and in the third test case we look at variations in f . (In the interest of brevity we do not
present our results for variations in α; no surprises are encountered.) We shall consider only Alternative
A for the EsY − EsM splitting, as rather extensive tests indicate that the bounds generated by Alternative
A and Alternative B are effectively indistinguishable. In all cases we take h = .001 for the fine mesh, and
h ≤ H ≤ Hmax for the coarse mesh, where Hmax = .025. We shall present our results in the form of s′H/s

′
h,
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s′/s′h, s
′
−/s

′
h, and s′+/s

′
h as a function of H . These ratios are represented on the plots as follows.

Legend: sHLB/s
h = 3, sHUB/s

h = 2, sH/sh = ×, sHM/s
h = ∆.

In each of the three test cases we shall consider three different output functionals `(v): the mean over
the domain,

`1(v) =
∫ 1

0

v dx ,(6.1)

which we shall denote the “mean” output; the value at a particular point in the domain (within the boundary
layer), x = 0.95,

`2(v) = v(.95) ,(6.2)

which we shall call the “point evaluation” output; and the flux at x = 1,

`3(v) = a(v, x)− 〈f, x〉,(6.3)

which we shall denote the “flux” output. As regards the flux output, it is readily shown by integration by
parts that, for u sufficiently smooth, `3(u) = νux(1); the advantage of `3 of (6.3) over the more obvious
representation `(v) = νvx(1) is that the former is a bounded functional while the latter is not. Boundedness
(or equivalently, continuity) of the output functional (i) ensures that the adjoint problem is well–posed, and
(ii) greatly improves the convergence rate of the bounds. Note that the other two outputs are also bounded:
the mean output is bounded in all space dimensions; the point evaluation output is bounded only in one
space dimension.

Proceeding with the numerical tests, our first test case is α = 0, ρ = 10, ν = β, f = 0, and β = 1; we
take σ = 1, which ensures coercivity. We present in Figures 6.1, 6.2, and 6.3 on page 15 the bound results
for the mean, point evaluation, and flux outputs, respectively. As expected, we obtain bounds; the bounds
converge as O(H2); and the bounds are reasonably accurate even on the coarsest meshes. For the mean and
point evaluation outputs s′H and s′ are considerably more accurate than the bounds s′−, s′+; however for the
point evaluation output, the effectiveness of the estimator is, in fact, quite good. In any event, we emphasize
that the bounds provide certainty that can not be extracted from either s′H or s′.

In our second test case we choose α = 0, ρ = β, ν = 1, f = 0, and β = 10; we again take σ = 1. We
present in Figures 6.4, 6.5, and 6.6 on page 16 the bound results for the mean, point evaluation, and flux
outputs, respectively. The results are very similar to those for our first test case — perhaps not surprising
since this second test case is, in effect, a rescaling of the first test case. Note, however, that the numerical
treatment of the two test cases is quite different: in the first case bounds are guaranteed for all H ; in the
second case bounds are assured only for H sufficiently small. The numerical results of Figures 6.4, 6.5,
and 6.6 demonstrate that, in fact, bounds are obtained even on the coarsest mesh — that is, the “L2 −H1

assumption” is robust.
In our third test case we choose α = 0, ρ = 10, ν = 1, f = sin(2πβx), and β = 5. We present in Figures

6.7, 6.8, and 6.9 on page 17 the bounds results for the mean, point evaluation, and flux outputs, respectively,
for σ = 1. We present in Figures 6.10, 6.11, and 6.12 on page 18 the bound results for the mean, point
evaluation, and flux outputs, respectively, but now for σ very large (σ = 100) — effectively infinite (note
there is no coercivity limit on σ since ν′ = 0 for this test case). Comparison of Figures 6.7, 6.8, and 6.9 with
Figures 6.10, 6.11, and 6.12 clearly demonstrates the important role that scaling–parameter optimization
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can play in achieving sharp bounds. In this particular example σ → ∞ is easily identified as optimal: in
the limit σ → ∞ our general formulation reduces to the “direct” procedure to which we alluded in Section
2. The development of effective scaling–parameter optimization procedures for more general situations is a
topic for future work.

In closing, we simply remark that sensitivity derivatives arise with increasing frequency in many different
design and optimization contexts. Both certainty and efficiency are currently compromised by the lack of
quantitative, relevant error estimation procedures; the techniques presented and illustrated in this paper
represent an important first step in addressing this problem.
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Fig. 6.1. Results for the mean functional and ν = β at β = 1.
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Fig. 6.2. Results for the point evaluation functional and ν = β at β = 1.
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Fig. 6.3. Results for the flux functional and ν = β at β = 1.
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Fig. 6.4. Results for the mean functional and ρ = β at β = 1.
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Fig. 6.5. Results for the point evaluation functional and ρ = β at β = 1.
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Fig. 6.6. Results for the flux functional and ρ = β at β = 1.
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Fig. 6.7. Results for the mean functional and f(x) = sin(2πβx) at β = 5 with σ = 1.
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Fig. 6.8. Results for the point evaluation functional and f(x) = sin(2πβx) at β = 5 with σ = 1.
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Fig. 6.9. Results for the flux functional and f(x) = sin(2πβx) at β = 5 with σ = 1.
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Fig. 6.10. Results for the mean functional and f(x) = sin(2πβx) at β = 5 with σ = 100.
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Fig. 6.11. Results for the point evaluation functional and f(x) = sin(2πβx) at β = 5 with σ = 100.
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Fig. 6.12. Results for the flux functional and f(x) = sin(2πβx) at β = 5 with σ = 100.
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